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Capacity of Mismatched Gaussian Channels
with and without Feedback

S. Ihara *
Department of Mathematics, College of General Education, Nagoya University,
Nagoya, 464-01 Japan

Summary. Continuous time communication channels with additive noise are
considered under an average power constraint. The noises are assumed to
be Gaussian processes equivalent (or mutually absolutely continuous) to
a Brownian motion. We study the problem whether the capacity of the
channel is increased by feedback or not. It is given a sufficient condition
under which the capacity is not increased by feedback. It is also given an
example of a channel whose capacity is doubled by feedback.

1. Introduction

Whether the capacity can be increased by feedback or not has been studied
for various communication channels [4, 7, 13, 19, 20, 25]. Shannon [25] showed
that while the coding capacity of a discrete memoryless channel with feedback
is equal to that of the same channel without feedback, the zero error capacity
is increased by feedback. Kadota et al. [19] showed that feedback can not
increase the information capacity of the white Gaussian channel (WGC). This
result has been generalized by Hitsuda and the author [13]. On the other hand
it has been known that, if a Gaussian channel (GC) is with a non white noise,
the capacity is increased by feedback (see [4, 24]). Moreover it was claimed
by Ebert [7] and Pinsker that the capacity Cf of a GC with feedback is at
most twice of the capacity C of the same channel without feedback:

Cf <2C. (I.1)

In this paper we consider a continuous time GC. We give a sufficient condi-
tion under which the capacity is not increased by feedback. We also give an
example of a GC whose capacity is doubled by feedback.

We are concerning the effect of feedback on the capacity of a continuous
time GC presented by

Y(t)= f x(u)du+Z(t), 0<t< T, (1.2)
0

*Research partially supported by ONR contract N00014-84-0212



454 S. Ihara

where x(-), Y(.) and Z(-) are the channel input, the channel output and the
noise, respectively. The noise Z(-) is assumed to be a Gaussian process given
by

t a

Z(t)=B(t)+ J Jf(s, u) dB(u)ds, (1.3)
0 0

where B(.) is a Brownian motion and f(s, u)eL2 ([0, T]2) is a Volterra function
(i.e., f(s, u) = 0 if s < u). It is assumed that the channel is with noiseless feedback,
so that the channel input x(-) is a causal function of the message to be transmit-
ted and the channel output. The WGC is presented by

Y(t)=Jx(u)du+B(t), 0<t<T, (1.4)
0

and is a special case of the GC (1.2). We assume that an average power constraint

T

f Efx(u)2 ] du< PT (1.5)
0

is imposed on the channel input, where P>0 is a constant. The definition of
capacity used in this paper is the mutual information version, and the capacity
is sometimes called the information capacity. We define the capacity as the
supremum of the mutual information between the message and the channel
output taken over all messages and channel inputs satisfying the constraint.

Let F and F* be the integral operators on L2 [0, T] with integral kernel
f(s, u) and f*(s, u)-f(u, s), respectively, and define a self-adjoint operator S
by

S= F+F* +FF*. (1.6)

It is shown that if S is non-negative definite then the capacity of the GC (1.2)
subject to (1.5) is not increased by feedback and is equal to PT/2 (Theorem 2).
Although it may be expected that if S is not non-negative definite then the
capacity is increased by feedback, we have not succeeded to prove.

To show that the capacity is increased by feedback, we consider a special
case of the GC (1.2) where the noise Z(.) is given by

I I

Z(t)=B(t)- f JeU-'dB(u)ds. (1.7)
0 0

It is shown that, if the power P is equal to 1/2, the per unit tiim: capacity
of the GC given by (1.2) and (1.7) with feedback is at least twice of that of
the same channel without feedback (Theorem 3).

We should here gi;e CUi111AAAh.. , f.d1j ,O,,.3.-, after this paper
was submitted. For the discrete time GC, Cover and Pombra [5] proved the
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inequality (1.1) with the aid of certain matrix inequalities. The author [17]
showed that, for any e > 0, there exists a discrete time GC for which an inequality

Or > (2 - -) C

holds. Note that the noise process considered in [17] is derived from a discrete
time approximation of the process Z(-) of (1.7). Thus we can say that the factor
two in (1.1) can not be replaced by any other constants less than two. In [3]
and [18], some conditions are given for the discrete time GC under which
the capacity is increased by feedback.

2. Preparation

Let and q be random variables defined on a probability space (2, ., P) taking
values on measurable spaces (G, 9) and (H, *), respectively, and denote by
u. and p,,, the probability distribution of and the joint probability distribution
of and q, respectively. The mutual information I(', q/) between and q/ is
defined by

GXH

if p., is absolutely continuous with respect to the product measurep x p,, (,U,,,
</ xy4), where dp/,,/d/ax/a, is the Radon-Nikodym derivative; otherwise
I( , rq) is infinite. Since the measurable spaces (G, T) and (H, ..") can be taken
arbitrarily, and q may be stochastic processes as well as finite dimensional
random variables. The conditional mutual information 1(,, 716) between and
r/ given is defined by

I(, = f log(d /a :11 /du/a C x p,,,;) d/a,,nl; dp ,,

if p.,,1 ;«p,:xp,,, (p-a.s.), where p,.Ic is the conditional probability distribution
of given C, and uu,, is the conditional joint probability distribution; otherwise
I( , ,/If) is infinite.

We consider the GC presented by (1.2) and (1.3). The Brownian motion
B(-) is assumed given on (2, ,, P). Throughout the paper we assume that the
feedback is instantaneous and noiseless. Precisely speaking, the following condi-
tions are satisfied.

(a.1) The message 0 to be transmitted is a random variable defined on
( 2, -4, P), independent of the channel noise Z(.), taking values on an arbitrary
measurable space (G, T).

(a.2) x(t) is F(O)' ,F(Y) measurable, where F(O) (resp. .F(Y)) is the a-field
generated by 0 (resp. {Y(u); u <t}) and f'"(0)V .9;(Y) is the smallest a-field con-
tainirg F(,9) and .9,(Y).

(a.3) The stochastic Eq. (1.2) has a unique solution Y(.).
The GC ;, said to be ,ithout feedback, if (2.1) and foliQ oing (a.2') are sat-

isfied:
(a.2') x(t) is F(O) measurable.
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Denote by lT(O, Y)=I(0, YOT) the mutual information between the message
0 and the output YoT={Y(t); O:t5 T}. Then, under the constraint (1.5), the
(information) capacity C{(P) of the GC (1.2) with feedback is defined by

C (P) = sup T (0, Y), (2.1)
O.X

where the supremum is taken for all pairs (6, x) of a message and an input
x(') satisfying (a.lHa.3) and (1.5). In the same manner the capacity CT(P) of
the GC without feedback is defined, by taking the supremum in (2.1) for all
pairs (6, x) satisfying (a.1), (a.2') and (1.5). Equivalently, the capacity CT(P) is
given by

CT(P)= sup lt(x, Y),

where IT(x, Y)=J(x r , Yor) and the supremum is taken for all inputs x(.) which
are independent of Z(-) and satisfy (1.5). We are also interested in the capacity
per unit time, under the constraint

lim sup - f E [x(u)'] du<P. (2.2)

The per unit time capacity Cf (P) of the GC (1.2) with feedback is defined by

C' (P) = sup (, Y), (2.3)

where
I

T(O, Y) = lim sup Ir (, Y) (2.4)T-= T

is the per unit time mutual information and the supremum is taken for all
pairs (0, x) satisfying (a.1)-(a.3), for all T>0, and (2.2). The per unit time capacity
C(P) of the GC without feedback is defined in the same way.

3. Channel Whose Capacity is not Increased by Feedback

The GC presented by (1.2) and (1.3) is considered in this section. It is well
known that there exists a Volterra kernel g(s, u)eL2 ([O, T'J2 ), called the resolvent
kernel off(s, u), such that

f(s, u)+g(s, u)+ if(s, v)g(v, u)dv
U

S

=f(s, u)+g(s, u)+ Jg(s, r)f(V, u)dLv=0, s, ue['0, TJ, (3.1)
U
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(see [26]). Denoting by G the integral operator on L3[0, T] with g(s, u) as the
kernel, (3.1) means that

(I + F)(I + G)=(I+ G)(I + F)= 1, (3.2)

where I is the identity operator on L [0, T]. It follows from (1.3) and (3.1)
that

I

Z(t) = J F(t, u) dB(u), (3.3)
0

t

B(t)= J G(t, u)dZ(u), (3.4)
0

where F(t, u)=I+ff(s, u)ds for t;u, F(t, u)=0 for t<u, and G(t, u) is corre-
u

sponding to g(s, u) in the same way (see [12]). Since (3.3) is the canonical repre-
sentation of Z(-) in the sense of L.vy-Hida-Cramtr, we can apply a result
in [13] to get a formula for the mutual information in the GC.

T

Theorem 1. Suppose that f E[x(u)2] du< co. Then the mutual information in the
GC (1.2) is giren by 0

1, (0, Y)= 1 E [(xo (u) - o(u))'] d u, t>0, (3.5)
0

where xo = (I + G) x, more precisely,

I

Xo(t)=x(t)+ J g(t, u) x(u)du, t>O, (3.6)
0

and 1o (t) = E [xo (t) I.F3 (Y)] is the conditional expectation.

We now can give lower and upper bounds of the capacity and also a sufficient
condition under which the capacity does not change with feedback.

Theorem 2 [16]. (1) The "capacity of the GC (1.2) subject to (.5) is bounded
by

P T/2:5 CT(P) < C{(P);S <_(i + F)- 1112 P T/2, (3.7)

where f1 is the operator norm of L2 [0, T].
(2) If the operator S defined by (1.6) is non-negatire definite (S> 0), then

CT(P)= C- (P) = P T/2. (3.8)

Proof (1) The second inequality of (3.7) is clear by definition. For an integer
N, denote by A. (n = 1, ... , N) the interval ((n-I) TIN, nT/N] and let O(n), n
- 1, ... , N, be mutually independent Gaussian random variables with mean zero
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and variance P Let 01,=(O(l), ... , O(N)) be independent of Z(-) and define an
input xN(.) by

x.(t)= 0(n) if tE4,.

Then it is clear that (ON, xN) satisfies (a.1), (a.2') and (1.5). For any E> 0, we
can show that there exists an integer N such that

Jr (ON, Ys) >= P T12 - c,

where Ys(-) is the output corresponding to (k,. xN). This implies that the first
inequality of (3.7) is true. This inequality was also shown by Baker [1, 2].
Let (0, x) be any pair satisfying (a.1)-(a.3) and (1.5). Define xo(') by (3.6) and
denote by 11'12 the norm of L2 [0, TJ. Then, using Theorem I and (3.2), we
have

T

IT(0, Y)=+ j E[(xo(u)- -o(u))'] du
0

+E[IIXojI ] =E [1(1 + G) x112]

+II +Gi 2 E[flxj"]j] <II(I+F)- 'jiPT (3.9)

The last inequality of (3.7) follows from (3.9).
(2) Since S is a Hibert-Schmidt operator, if S>0 then we can easily show

that

ll(1+ F)- '112 = Il( + S)- 1 11 = 1. (3.10)

The Eq. (3.8) is straightforward of(3.7) and (3.10). 1-

4. Channel Whose Capacity is Increased by Feedback

Our main aim is to show that feedback increases the capacity of a GC (1.2)
with the Gaussian noise Z(') given by (1.7). We consider the GC on the time
interval [0, cc) and under the constraint (2.2) with P= 1/2. We can show that
the per unit time capacity of the GC with feedback is equal or greater than
twice of the capacity of the same channel without feedback.

Theorem 3. Let Cf (P) and C(P) be the per unit time capacity with and without
feedback, respectively, of the GC given by (1.2) and (1.7) under the constraint
(2.2). Then

C'(+); 1 (4.1)
and

(4.2)

Let us outline how to prove Theorem 3. To show (4.1) we construct a coding
scheme (0, x), in the following way, by which mutual information T(8, Y)= 1
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is tran-mitted per unit time. Let 8 be a Gaussian random variable independent
of Z(-) wiih mean zero and variance one, and A(t) be a function defined by

() exp (. C} g(U) 2 du) r 0, (4.3)

where the function g(t) is the unique solution of the differential equation

(0)= 7I=.' 72(44

The coding scheme of the information transmission is given by

0

where 6(u)=EL8j.F(Y*)]. Thcri we can prove the following proposition.

Proposition 1. (1) The stochastic Eq. (4.5) has a unique solution Y(I
(2) A (t) E[C(8-G6(r)) 2] = J, r>0
(3) T(O, Y*)=I1.
It is clear from (1) and (2) that (8, x) satisfies (a.lHa.3) and (2.2) with P= 1I2

w-he re x (t) =A (t) (9- ()). Hen ce (4. 1) foll Io ws from (3): Cf (lI 2) !T(ei,*) = I.
We turn to the calculation of the capacity C(P) without feedback. In place

of the GC (1.2) we consider a slightl%- modified GC given by

Y0 (r= fx(u) du+-ZO(r), (4.6)
0

where the noise Z 0 (-) is a Gaussian process defined by

t £

ZO()=B(t)-J f eu--dB(u)ds
o -M

0

0

here~o= j eudB(u) and the Brownian motion has been extended to a Gaussian

process {B(r); - c < t <to in such a way that B(-) is with independent incre-
ments such that E[(B(r)-B(s)) 2 ] = t-sI. It is shown that the derivative ;to(-)
of the process Z 0 (-) can be regarded as a generalized stationary Gaussian process
[10]. Let .9 be the space of all infinitely- differentiable real functions with compact
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support and 9 T E9-; supp(( )c[[O, TJ. Precisely speaking, the deri'ati'e
2() of Z(-) is defined by

Z(O)= -z(,5')= - " z(r) €'(r)dt, .

Note that if X(r)=f5x(u)du then X(I)=x(5). It will be shown in Lemrna 4
0

that Z0(') is a generalized stationary process with spectral density function
(SDF)

2
f ')=2 7z/. 1 )( )

Differentiating the both sides of(4.6) we get a generalized stationary GC

"Fo (0S) = .x (0) + 2o (0) .G9

Replacing It(&, Y) in (2.4) by

l (X, t)= (. ; - o(' ',

defines the per unit time mutual information T(x, Y"0) in the GC (4.9). Denote
by C (P) the per unit time capacity of the GC (4.9) without feedback u,,der
the constraint (2.2). Using a result in [23] we can calculate the capacity (7o(i 2)
and (4.3) follows from the following proposition.

Proposition 2. It holds that

'(a = o( ) .(4.10)

5. Proof of Propositions

We prepare some lemmas to prove Proposition 1.

Lemma 1. The unique solution g(t) of (4.4) is given by

(g (t)--/ (g(r) -.,)1(cg(t)-i)o=Te- , t '2!O, (5.1)

where
" I= - + 1,,7 i),1(2 V'2), 6' ( ] + 5 i),1(2 V'7),

Y,= -01 V5 1/-.)1(1_ -1-:)',

and :i denotes the complex conjugate of a. Moreover, it holds that

lim g(t) = V'2. (5.2)
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Proof The roots of the polynomial

Q(t)=:--_ 1 -_V

are i'2, a and i, and it holds that

Then it is known that the solution g(r) of (4.4) is given by (5.1). We put 0(t)
=arg(g(t)-"x). Then we have

(g(t)- a),I(g (t) - z )l= g(t)- " 1:Rc,I e-xp( -2 Im(fl) 0(r))

=,g(t)-21,l- exp (-5 0 (t.  (5.3)

Since the right hand side of (5.1) tends to zero as t-:, noting (5.3) and -,-r
< (t):5 7z, we have

lim (g(t)- 2 ) [g(t)--1 '=0.

This yields (5.2). fl

Since the resolvent kernel g(s, u) of the Volterra kernel f(s, u)= -e"-s(s>_u)
is given by

g(s, u)= 1, S>u,

the expressions (3.3) and (3.4) for the process Z(-) of(1.7) turn to

I

Z(t)= j e-'dB(u), (5.4)
0

B(t)=Z(t)+ j Z(u) du. (5.5)
0

We consider the following information transmission over the GC given by
(1.2) and (1.7):

Y(t)= J A(u)(8- "j(u)) d u + Z(t), (5.6)
0



462 S Ihara

where 0 is the same random variable as in (4.5) and r7(u) is .(Y) measurable.
We define a function H(r) and processes (') and U(-) by

H(t)= A(t)+ f A(u) du, (5.7)
0

H(t) ;(t)=A(t) ,I(t)+ f 4(u) i(u) du, (5.8)
0

u (t) = Y (t)+;SY(u)du. (5.9)
0

Using (5.4), (5.5) and (5.9) we can easily show the following relations.

U (t)= f H (u) (0- (u)) d u+ B (t), (5.10)
0

Y()= e - 'dU (u). (5,11)
0

It is clear from (5.9) and (5.11) that

J5;,(Y) =.,(U), >0, (5.12)

meaning I,(0, Y)= I,(0, U) for all t>0. Since (u) is .(Y)=. (U) measurable,
(5.10) represents a WGC with feedback. The formula for the mutual information
in the WGC has been known (see, e.g., [22], Chap. 16).

Lemma 2. The mean square filtering error in the GC's (5.6) and (5.10) is giten
by

E [(e- (J))H] I + i H(u)2 du) (5.13)
0

vhere 6(t)= E[0I (Y)- r[e1,F,(U)]. The mutual information is given by

T
IT(O, Y)= I-(0, U) = f" H(t) E [(0 - (t))'] dt

0

t H(t)2 I+ d d dt. (5.14)

0 0

Note that the resulting mutual information does not depend on j('). Now
we can prose Proposition 1.
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Proof of Proposition 1. (1) Define processes U() and i(-) by

I

Uo(t)= J H (u)6 du + B(t),
0

S(t) = E f9 J (to)]. (5.15)

Then H(t) (t) of (5.8) can be written in the form H(t);(t)= f h(t, s)dUo(s) with
0

an L2-Volterra kernel h(r, s). It can be shown ([15]) that the stochastic equation
I U

u(t) = Uo(t)- f f k(U, s) dU(s) du, (5.16)
0 0

where k(t, s) is the resolvent of h(t, s), has a unique solution
I U

(t) = Uo (t) + h Jh(u, s) d Uo (s) d u. (5.17)
0 0

In other words, (5.10) has a unique solution U() when H(u)(u)

= f h(u, s)dUo(s)= f k(u, s)dTU(s). Since there is one-to-one correspondence be-
0 0

tween (5.6) and (5.10), this means that (5.6) has a unique solution Y(-) when
'i(-) is given by (5.15). From (5.16), (5.17) and (5.12) we see that 3 (U.)=,(U)
=.F,(Y) and that ,(t)=E[O!,(Uo)]=E[OL Y)]. Thus (4.5) has a unique solu-
tion Y*(-).

(2) It follows from (4.4) that

d g t~e p g(u) du)

= (g'(t)I g(t))exp J g(u)' du

~$~i(t) I+1)Cxp(+I 'g2u)

I d .~exp(I+IJig(u)' d +)±exp (Ig(s)2 ds) du}
=d2 o o
=d A(t)+ 'A(u) du

dt 0f o
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Therefore, noting (5.7) and the initial condition g(0)=.A(0)= 1,/2, A e obtain

H~)= (t) ~)' (u) d0 0 U

H(z)2=g() 2 exp g@) du)= expg(u)du (5.18)

and

I-fH(U) 2 du =exp( g (U)2 du) (5.19)

The desired equation is straightforward of (4.3), (5.13) and (5.19).
(3) It follows from (5.18), (5.19) and (5.2) that

T
lim H(T)2 I + fH()du = r g(T)2 .
T- 0 / T-

Hence, by Lemma 2, we get

Re, Y')= Jim I7(, I-)

=lim- f H(u)2 -i+-H(s)' d  du
T- 2 TO 0  0 S)T, )-, E

- lim JH(T)2 1+.fH(s)2ds=1. d
T-M, 0

We prepare two lemmas to prove Proposition 2.

Lemma 3. Let x(-) be an input independent of B(-), and Y(-), Yo(') and Y0 )
be the corresponding outputs of the GC's (1.2) (with the noise Z(-) given by (1.7)),
(4.6) and (4.9), respectively. Then

I T(X, Y)=I T(X, ?o), T 2!0, (5.20O)
and

T(x, Y)= T(x, YO)= T(x, o). (5.21)

Proof Using the same arguments as in [11], (5.20) can be shown. The second
equality of (5.21) is clear from (5.20). To show the first equality oi (5.2i) we
put

£

(s)=fe'dB (u), s>O,
0
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0

which are independent of .'= f e'dB(u). Note that the conditional mutual
information satisfies CO

Denoting It(x, Yj)=1(xo, Ylr J) and Ir(X, jY)=I(xT, jYo), we have

I T(X, ( Yo, C.'o)) = I T(X, if0) + 1 T(X, YO E 0) =1 T(X, Y)

I T (X, ( YO, t'7o)) = I T (X, )"0) + I T (X, o 0 YO),

and consequently

IT(X, Y)-1T(x, 1))=IT(x, eo 0 YO). (5.22)

In the same way we have

lr(X , e~o! )*o)= r((-X, Y). k;Lo)- lr(Yo, .o)

= It(X, e.o)+ r(Yo, eo1-X)-lr(Yo, Uo

= l(Zo, Uo- ( Yo, )=<5 l(Zo, U- (5.23)

Noting (4.7) we can calculate Ir(Zo, 0) by use of (5.14):

Ir (Z o , o f) i f d t= +l ° -I + T

Therefore,
1

lir IT(ZO, Uo)=0. (5.24)
T-T

The first equality of (5.21) follows from (5.221), (5.23) and (5.24).

Lemma 4. The process Z 0 (') is a generali:ed sta:ionary Gaussian process with
covariance functional

E [20 (0 ) 20 C)3= (t) (t) d t

- f J e- J'- (s)(t)dsdt, 4, /E.-, (5.25)
- -M

and with SDF f (.) of (4.8), namely

E[2o(€)2o(O)] = J $(,) f) d)., (5.26)
wc

where (;) f e~' if.Ot dt is the Fourier transform of 0.
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Proof. We put
U $

4(t)= .f e"-'dB(u)ds,
0 -

for simplicity. Then Zo(t)=B(t)- (t) and

2o(4)=/(4)-(5), q5E29. (5.27)

It is well known that

E[B(O)/j(0)]= f 0)(t) 0(t) dt, 4, 0 c- 2 (5.28)

(see [16]). Exchanging the order of the ordinary integrals, the Wiener integrals
and the expectations, we can show

E[B¢)(4f] f e-('-'1O(s)O(t)d s d t,  (5.29)

-Z -:C

E[ () f) e-='-'jJ0(s)O(t)ds d t, (5.30)

by elementary calculation. We can derive (5.25) from (5.27H5.30). Denote )jt)

=4(t-T). Then it is clear from (5.25) that

E[20(€,) Z0 ()] = E [20 () 2 0 )],

meaning that the process Z 0 (') is stationary. Since

f-- 2 $(.0;;+ 1)- 1 d;.
2 n

I ~ 4)(s) 'k )l(. 2 + I d;. ds dt
X; f-M -M -

-:X - M

(5.26) follows from (4.8) and (5.25). 0

We are now in a position to prove Proposition 2.

Proof of Proposition 2. It is clear from (5.21) that

C (P) = C'O (P). (5.31)
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Let RTI be the covariance operator of the process 2o(-) on the interN al [0, T],
namely an operator on L2 [0, 7-] such that

T T

0 0 0

where (.,-)T is the inner product of L2 [0, T]. Denote by K7T the integral operator
on L2 [0, T] having I/2e-l'--1 as the integral kernel. Then RT=l-Kr, where
I is the identity operator. We can show that the eigenvalues !K.(T)} of KT
are

where or, or,(T) is uniquely- determined by

The corresponding eigenfunctions 0,(t; T) are given by

0'(0)=exp(ic, 0 -- e-kp(- ic~), n= 1, 2,..

Therefore the eigenvalues {;.,(T)l of R7. are

)..(7) 1I- Q(T)= c(T) (1 + c.(T)2)-, n = I,2

Let CT(P) be the capacity of the GC (4.9) w;.ithout feedback, on the finite interval
[0, T], subject to (1.5). Then it is knowx.n that

N A (TP)
CT(P)=! log * 5.-2

A. .(T) '(.2

where a positive constant A =A (T P) a nd an in teger N = N(T P) a re u ni quely
determined by

N

Z(A-.,,(T))=PT and N=rnax~n; 2.,(T)<A}.

It can be shown that

I1 <~ IIiT
2 T<~' 1  '2

Hence w;e know that

lim N (T, x=c, lim A (T)=1. (5.33)
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It follows from (5.32) and (5.33) that

lim I 17() li1
T-= "T CrT}-=-TTm .. log ).,(T---)

= lira f Iog 0 + n 2T2 x.2)d x

I
= Jim ra log(l+x-2)dx=j.

T-X 2 t r/

We can also show that

Jim 1 1It
T-2 2

for every £>O. Therefore, for any t>O and any input signal x(-) satisf,,ing
(2.2) with P= 1/2, there exists To such that

1 1Tx ) -- -T Cr( E)<5 j+ r, T>2!To.
IT(X, '15C(±~ ic T 0

Since c is arbitrary, ve conclude that

Co) < (534)

Let an input signal x(.) of the GC (4.9) be a mean zero stationary Gaussian
process with SDF

h(;.)= 2 (.2+ 1)"
Since

E~x(t)2]= h(.)d;.=I, -ox<t<:c,
-- O

the input X(') satisfies (2.2) with P=1/2. Since the SDF h(;) is rational, we
can apply the Pinsker's formula ([23], Theorem 10.3.1) to get

r(x, c)=+-- log I + h}d
cc f

- f log(1+).-)d.=j. (5.35)

Therefore, we have

Co(D)T(x, k)=j. (5.36)

Combining (5.31), (5.34) and (5.36) we have (4.10). M
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S. Remarks

There is a well known formula for the capacity "(P) of a stationary GC:

1 AC7(P)=- f log -d2, (6.1)

where f(;.) is the SDF of the noise process, A = {2; f(.) < A) and the constant
A is determined by

f (A-f(;.))d.=P
A

(see, e.g., [8], Theorem 5.26; [9], Theorem 8.5.1). We have not applied the formu-
la (6.1) to calculate the capacity of the GC (4.9), since the noise is not an ordinary
process but a generalized one. However, the resulting capacity C.(1/2)= 1/2
is equal to the right ';and side of (6.1) with f(.) of (4.8) and P= 1/2.

In the same manner as in the proof of Theorem 3, we can derive a lower
bound for the capacity C.r(P) of the GC of Theorem 3. Let y(P) be the unique
solution of the equation

x3 - P(x + 1)2 = 0.
" Then

('(F) ' (P). (6.2)

It is conjectured that, for the GC of Theorem 3, the inequality

Cf(P) ;?! 2 C(P)

holds only if P= 1/2.
We note that the process Z(.) of (1.3) is equivalent (or mutually absolutely

continuous) to a Brownian motion on each time interval [0, 7] ([12]). Denote
by 11-1ir the norm of the reproducing kernel Hilbert space corresponding to
Br={B(t); 0<t< T}. Then the constraint (1.5) can be written in the form

E[iixoiJJ] PT, (6.3)

where X()= f x(u)du. Since the constraint (1.5) or (6.3) is given in terms of

B(') and not of the channel noise Z(.), the GC (1.2) subject to (1.5) is called
a mismatched GC (see [1, 2]). On the other hand the WGC (1.4) is to be a
matched GC under (1.5). In this paper we have treated GC's with noises equiva-
lent to a Brownian motion. This is rather for technical reasons. We can investi-
gate a matched or a mismatched GC with an arbitrary Gaussian noise [1, 2, 13].
Baker [1, 2] has determined the capacity of the mismatched GC without feed-
back. It has been shown that the capacity of the matched GC is not changed
by feedback under a moderate assumption on the Gaussian noise [13]. Theo-
rem 2 may be generalized by using a similar method as in [13].
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Ebert [7] claimed that the inequality (1.1) holds for the GC (I _') subject
to (2.2), under an assumption that the V'olterra kernel f (s, U) is a funciion of
s-u. If the inequality (1.1) is true for the continuous time GC, the feedback
capacity ('(1/2) of the GC of Theorem 3 would be equal to one, twice of the
capacity (7(l,/2)-=1,12 without feedback, and the coding scheme gitven by (4.5)
'Aould be optimal in the sense of attaining the capacity. We recall that, for
the WGC, a coding scheme eiven in the same manner as (4.5) is opuimal [1i1].

In this paper we have dw ;elled only' on information capacity. In case c,.
discrete time GC, Cover and Pombra [5] proved the inequality (1.1) for the
infonritrion capacity, and showed that the information capacity is achievable
by a feedback code. This means that, in case of discrete timne GC, the infor~nation
capacity C-r(P)= ({f(P) per unit time isequal to the coding capacity C,d(P).
For the continuous time GC with feedback, as far as I know, such an equality
has not been established. However we can sho-w that the lower bound -..(P)
for the capacity C-(P) (see (6.2)) of the GC of Theorem 3 is achievable by a
feedback code, m caning that -i(P) ([Ofd(P) 5(7f ((P). For the capacity "I thout
feedback w e refer [6, 9, 2]].

.Ac2'r..,!edremn-i-n. The a2.r %xishes to expess h~s sincere ;h~anks to Prc're~scr C.R Baker cr N
discussions.
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